
ON AN APPLICATION OF HILRERT'S 
INDEPENDENCE THEOREM 

(OB ODNOM PBILOZHENII TEOBEMY 

NEZAVISIMOSTI GIL’BEBTA) 

PMM Vo1.27, No.5, 1963, pp.887-889 

I. M. BELEN’ KI I 

(MOSCOW) 

(Received June 20, 1962) 

1. Hilbert developed a method [d by which. in addition to a criterion 

for the necessary and sufficient condition for the extremum of a func- 

tional in the calculus of variations, one can also obtain the fundamental 

conditions of the Hamilton-Jacobi theory. 

Hilbert’ s method is based on the “independence theorem”, by which 

the variational problem of minimizing some functional 

(b) 

J= 
s 

F (x, y, y’) dx = extr (I.11 
(a) 

can be reduced to a study of another function 

(b) 

J* = s (F (xv Y, P) 0 (Y’ - P) FP) dx ( F = aF (2, Y, P) 
P ap 1 

11.2) 

w 

whose value no longer depends on the choice of a curve passing through 

the fixed end points (a) and (b). 

Starting from the condition that the integral (1.2) is independent 

of the path of integration, it can be shown that the unknown function 

p = p(x, y) of the variables x and y must satisfy the first-order 

partial differential equation 

F,, (P, + PP~) + 

which Hilbert called the “adjoint 

(1.1). If the function p(x, y) is 

PF,, + F,, - F, = 0 (1.3) 

equation” for the original problem 

chosen in this way, the problem of 

1349 



1350 I.M. Belen’kii 

minimizing the functional (1.2) must be considered equivalent to prob- 

lem (1.1). 

Mayer [21 has studied the independence theorem and its relation to 

the Jacobi-Hamilton theorem for the case of n-dimensional space, when 

the desired functions minimizing the functional in question are required 

to satisfy a certain number (less than n) of differential equations. 

2. We shall use Hilbert’s independence theorem to find the tra- 

jectories of a point of unit mass (n = 1) moving in a conservative field 

with the potential V(x, y). Consequently, by virtue of the principle of 
stationary action in the Jacobi form [31, we must here minimize a func- 

tional of the form (l.l), where 

F (2, Y, p) = 1/z@ - V (GY)) ~I+?%%? (2.1) 

Constructing Hilbert’ s adjoint equation (1.3) for our variational 

problem, we obtain an equation which must be satisfied by the desired 

function p(x, y) 

P, + PP,, = (1 + P2) (-- P@x + @J (@ = In v/a (E - V (z, y))) (2.2) 

Thus, the problem of finding trajectories for the motion of a point 

in a conservative field is now reduced to finding the characteristics 

of Hilbert’s adjoint equation (2.2), or, expressing the problem differ- 

ently, to the integration of the system 

dx dy -=-.L--L dp 
1 P (1 t: P2) (-- PmX + my) (2.3) 

If we regard the upper limit in (1.1) as variable, then the value of 

the integral (l.l), taken along the extremal which passes through the 

points (x0, yo) and (r, Y), will coincide with the value of the func- 

tional (1.2) for any curve passing through these two points (ru, y,) 

and (x, Y), provided that p(~, y) is a solution of Hilbert’s adjoint 

equation (1.3). Hence, taking F(x, y, p), in accordance with (2. I), we 

readily obtain 

_-- 
l3J l/a (E: - V) 3J PV-~@--V) 

-z= 
-5 

1/v+ 3Y 1/fq? 

Noting that, in accordance with (2.3), p = dy/dx, we can use the 
energy integral to obtain 

t3J 8J 
--u ax - 2’ 

--v 
i3y - Y 

and consequently we can write the equation of the trajectories in the 
following form: 
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$dz+dy=O 

3. Let us consider a class of motions for which the function 

F(x, y, y’) is of the form 

-_-_ 
v/z (E - v b, Y)) v1 + Y’2 = A (29 Y) + B (x7 y) Y’ 

(2.5) 

(3.1) 

and the integral (1.1) is independent of the shape of the curve joining 

the points (zO, y,,) and (x, y); hence, by virtue of the condition that 

the integral is independent of the path of integration, we find [41 

&4 (2, Y) ~3 (2, Y) ____- 
ay az =O 

Since 

A tz, Y) = aJ / ax, B (I, y) = aJ t @ (3.2) 

it follows that we shall satisfy the conditions of the class of motions 

under consideration if we require that the complex velocity of the point 

< = v exp (- iy) (where v is the magnitude of the velocity and q~ is the 

angle formed by the velocity vector with the x-axis) be an analytic 

function of the complex variable z = r + iy. This in turn yields the 

condition, by (2.4), that 

aJ aJ 
Lb) =x-iay (5 = v exp (- WI) (3.3) 

will also be an analytic function. Hence, using (2.5). we readily obtain 

the equation of the trajectories in this form 

Im 5 (z) dz = 0 (3.4) 
20 

4. The necessary condition that must be satisfied by the potential 

of the force field V(X, y) in order that the complex velocity c(z) be 

an analytic function can be obtained by setting 

aInv=O (v = v 2 (E - v (2, Y))) 

Thus, the potential V(x, y) must satisfy an equation of the form 

vAv=(g)a+(g) (E = 0) 

(4.1) 

(4.2) 

This equation will be satisfied by any function of the form 
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V kc, Y) = A exp (cp (x1 Y)) (4.3) 

where A is a constant and ~(n, y) is a harmonic function. 

It is known that if f(z) is an analytic function in some region G, 

then If(z) 1 will be a logarithmically subharmonic function (that is, 

not only the function itself but also its logarithm will be subharmonic) 

in the same region, since it is known that the logarithm of the modulus 

of an analytic function, that is, an expression of the form InI f(z) 1, 
is a subharmonic function [51. 

It follows from this that if A > 0, then V will belong to the class 

of logarithmically subharmonic functions, since the solution of (4.3) 

can always be represented in the following form: 

V = A I exp (f b))l (cp (G Y) = Re f (4) 

where f(z) is an analytic function. 

It should be noted that if A < 0, then V will be a superharmonic 

function, since for this case it will follow from (4.2) and (4.3) that 

AV < 0. From the form of the solution (4.3). as well as from the pro- 

perties of harmonic functions, it follows that if the functions Vl, V2, 

. . . ) Vn are solutions of the equation, then their product V = Vl.. .Vn 
will also be a solution of equation (4.2); similarly, if Vl and V2 are 

solutions, then their quotient V = VI/V2 is also a solution; further- 

more, if V is a solution, then the function f(V) = BP is also a solu- 

tion of equation (4.2) for arbitrary values of B and a. 

In particular, if we consider a harmonic function of the form 

cp= nInr [r = l/x2 + y2, n = const) 

then for the potential of the force field V we obtain V = Ar”. which 

represents attraction toward or repulsion from the center, depending on 

the signs of A and n. 
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